7. Marine Pollution: Its Sources, Distribution and Solutions

Champions: Dr Clara Manno¹, Jon Rees² and Dr Patricia López-García³

Associated SAG Member: Prof Bhavani Narayanaswamy⁴

¹British Antarctic Survey, Cambridge, UK

²Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, UK

³National Oceanography Centre, Southampton, UK

⁴Scottish Association for Marine Science, Oban, UK

7.1. Scope and Context

Marine Pollution is a global societal concern that adversely affects marine ecosystem services and human health. To effectively explore and mitigate marine pollution, a combination of advanced technologies and methodologies is essential. These include remote sensing, in-situ sensors, laboratory analyses, modelling, data integration, artificial intelligence and environmental engineers. Together, these capabilities might provide a comprehensive understanding of the fate and behaviours of current and future effects of marine pollution in the ecosystems, to advance their detection, monitoring and remediation and support innovative management and policy strategy to protect marine environments. To develop an effective requirements framework toward marine pollution, educational and public awareness campaigns as well as sustainable practices engagement with national and global initiatives are crucial. International programs and initiatives focused on marine pollution are often collaborative efforts involving multiple countries, organizations, and stakeholders, aimed at strengthening scientific research and monitoring, improve data sharing and collaboration.

An example of an international initiative is the Back to Blue (an initiative of Economist Impactⁱ and The Nippon Foundationⁱⁱ) published 'A global ocean free from the harmful impacts of pollution: Roadmap for actionⁱⁱⁱ, in March at the World Ocean Summit. The roadmap is a strategic framework to build a comprehensive evidence base to tackle ocean pollution collectively. Now, the IOC UNESCO Ocean^{iv} and UN Environment Programme^v Secretariats aim to develop an implementation plan for the roadmap. The Ocean Decade also published the 10 Vision 2030^{vi} White Papers, each focusing on a specific Ocean Decade Challenge^{vii}, represent a collaborative effort to develop the science we need for the ocean we want by 2030.

By 2040, the scientific developments and technological advancements are expected to play a crucial role in enhancing our understanding of marine pollution (UNSDG14), restoring marine ecosystems, and ensuring sustainable use of ocean resources. In this frame, the scope of Marine Pollution Grand Challenge is to support a coordinated, collaborative, and collective efforts to develop an economically and environmentally sustainable approach to research

infrastructure for current and future marine pollution research, within the context of the other Grand Challenges and the wider UKRI research environment.

7.2. Anticipated Scientific Developments By 2040

Best practices (BP) followed in all facilities to ensure reproducibility, accuracy, and precision and reduce methodological bias. This will produce high-quality data that could be implemented in models and will also help to understand the problem and better inform policy and decision making. These BPs will be available and will be stored in a public repository, e.g. Ocean Best Practices System (OBPS) which was formally adopted as an IOC Project in June 2019, joint sponsored by the IODE and GOOS Programmes. BPs will be agreed by a community of experts and will be available for continuous community review.

Unified Certified Reference Materials (CRMs) to be used in all UK facilities and coordinate with other international initiatives. Facilities will need to report on values from these materials. Some CRMs are available but for some pollutants or groups of them, laboratories need to prepare their own. UK experts will have to agree on protocols to produce these CRMs and intercalibration exercises will also be required. Experts will engage with metrology institutions and national institutes of standards among others to ensure traceability of the material and to secure its production in the future.

Long-term monitoring strategy established. This will include long-term ocean monitoring sentinel stations as recommended in the Ocean Decade Vision 2030 White Papers. These stations will include historical and new stations. Data collected will help to understand trends, help identify hotspots and pollutants of concerns which will help to develop effective control and mitigation strategies.

Ability to deal with complex, high frequency data that provides clear outcomes to the needs of long-term monitoring and assessment programs. Currently, the majority of the data collected through autonomous or high frequency (big data) means is not fit for purpose in monitoring and assessment programs. Artificial Intelligence (AI) and machine learning (ML) may provide some of the answers, but we need to reconsider current monitoring indicators, and how policy tracks environmental changes. Big data will not always provide the critical nuances needed to guide policy, so this requires both bottom-up and top-down rethinking on monitoring frameworks, national and international environmental indicators, and the use of big data to resolve questions, or (at least) add to our understanding of annual and multi-annual changes. This will also require a unified datasets portal with all available measurements and harmonization.

UK archives to store samples for sharing and future studies. This will also require sharing sampling methods and storing requirements etc. We need to collect quality samples for future studies (to answer future questions). Having BPs in place for sample collection and preservation will help to fill all requirements. New emerging pollutants are being introduced and discovered every day, and their effects are, in most cases, still unknown. Therefore, these samples will help

to carry future investigations by providing the opportunity to access historical samples that might be required. This will need to be taken into account when defining the BPs.

UK database around labs/institutions/companies to increase visibility and collaboration. Efforts from interest parties will be required to keep this database up to date.

Efficient sample collection strategy. Engaging with other scientific areas to collect samples in a more efficient way: reducing time onboard ships by reducing the amount of people required to take samples and increasing the number of samples collected. Onboard technicians and researchers will follow BP protocols for sampling and preserving the samples. This might require a managed database for scientists to engage with planned activities they can join and to publicise any activity that can include extra sampling.

7.3. Key Science Questions, Knowledge Gaps and Uncertainties

Identify real thresholds of toxicity/ecological impact within a multi-stressor system: Addressing marine pollution requires a holistic approach that considers the interconnectedness of pollutants and their combined effects on marine ecosystems. Understanding the interactions of pollutants with other environmental stressors such as physical changes (habitat destruction, temperature shifts, change in pH), or biological factors (invasive species, diseases) is also crucial. To address the impact of pollutants within an environmental and climatic change context means that thresholds can be reached even if individual pollutants are below their harmful levels.

Identify long-term effects, including resilience and transgenerational effects: Pollutants can persist, leading to bioaccumulation and biomagnification in the marine environment. Pollutants not only affect the exposed individuals but might also have consequences for subsequent generations (i.e. affecting mechanisms such as genetic, epigenetic, and developmental pathways) resulting in long-term (and potentially irreversible) ecological impacts.

Assess hotspots of ecological risk as well as human and societal risk: Identify specific marine areas characterized by high levels of biodiversity, significant ecological functions, and intense human activities that pose risks to marine health. These areas could be particularly sensitive to pollution.

Estimate pollutant pathways and fate to assess states and trends: Understanding how pollutants enter, traverse, and persist in the marine environment. This process includes identifying sources, transport mechanisms, chemical transformations, and ultimate sinks or destinations of pollutants.

Identify a common approach to understand the impact of pollution and how to tackle the problem: It will be crucial to find a common approach (due to the vastity of pollutants) to have an overall understanding of the impact. In this regard, the first step will be to reduce complexity. For example, firstly, focus on the functional typology of pollutants (i.e. bioaccumulation, biomagnification, toxicology), secondly, identify a marker of general pollution as a proxy of occurrence and frequency, and finally, identify the main driving vectors (chemical, biological, physical).

7.4. Observation/Product Requirements

7.4.1. Observation

Scaling up from organism to population and ecosystem: This is fundamental to achieve a comprehensive and holistic understanding of pollution impacts (including, for example, habitat alteration and trophic interaction), leading to more effective environmental management and conservation strategies.

Large-scale and temporal data coverage: Robust datasets are fundamental for addressing the complex and evolving challenges posed by marine pollution. It enables the detection of long-term trends and seasonal variation, to assess the level of Chronic Exposure as well as Acute Events (i.e. oil spills), synergistic impacts and the prediction of future scenarios. Policymakers rely on robust data to create effective regulations to control pollution levels and mitigate risks.

7.4.2. Products

Enhance Data availability and statistical analysis to validate modelling: A lot can be done looking at and combining historical data. This will involve establishing a centralized database or repository and fostering national data-sharing agreements as well as enhancing computational infrastructure to support the processing and analysis of large data sets, and investment in developing advanced sensors for real-time monitoring of a wide range of pollutants.

Standardize measurements/best practices for dataset inter-comparability. This should include the developing of protocols (Cookbook concept, i.e. publicly available repository for community agreed methods and reviewed by a community of experts) which allow users to find values for uncertainty, precision, accuracy, etc within different laboratories and methods.

7.5. General Description of Key Capabilities

To be focused on actionable recommendations for research infrastructure and capability requirements

7.5.1. Digital Infrastructure

Increase model and statistical capability. These capabilities can be leveraged using big data analytics including integrated, diverse data sources; predictive models, including hydrodynamic modelling, such as pollution dispersion and ecosystem impact models; and statistical risk models and/or Probabilistic Risk Assessment (PRA) to assess the probability and potential impact of pollution events.

Develop AI and observation from space for rapid/large area surveys. Machine learning algorithms, particularly Convolutional Neural Networks (CNNs), can analyse satellite images (and drones equipped with a high-resolution camera) to detect oil spills, plastic waste, and other pollutants in the ocean. AI-powered geospatial analysis tools can create maps of pollution distribution, helping to identify pollution sources.

7.5.2. Observational Infrastructure

Improve and increase availability of equipment and technology for *in situ* analyses to test the multi-stressor impacts of combinations of contaminants. This should include multistressor and long-term experiment facilities, statistic and dynamic marine platforms, and lowpower, high-sensitivity autonomous sensors and samplers (i.e. chemical sensors, biosensors, AUVs and ROVs, Diffusive passive sampling device such as Gradients in Thin films (DGT) or Semipermeable Membrane Devices (SPMDs), active samplers and Lab-on-a-Chip (LOC) Devices).

Creating advanced waste treatment. This also includes recycling technologies and innovative methods for cleaning up existing marine pollution.

7.5.3. People, Skills and Partnerships

Education and awareness raising, this includes opportunities for cooperative and intersectional analytical and social science solutions such as the use of citizen science to increase sample collection and data generation while increasing awareness.

Engage more positively with industry and other stakeholders. Scientists and industry can collaborate on R&D projects (to develop new technologies and methods for pollution control, waste management, and sustainable production processes) and establish industry-scientist advisory panels to provide guidance on pollution reduction strategies. Encourage industries to make environmental data publicly available, allowing scientists to analyse and provide insights for improvement and collaborate to promote policies and regulations that support sustainable industrial practices and pollution reduction.

Foster collaborations and knowledge sharing between facilities to reduce competition for funding and keep broad capability of community and synergise efforts. Support interdisciplinary scientific field studies and collaborations.

Increasing dialogue around management strategy to prevent, mitigate, reduce, and regulate. This will require an integrated approach that combines regulatory frameworks, technological advancements, industry best practices, and community engagement.

7A. Annex

7A.1. Initiatives identified

Some initiatives have been identified. A list of those mentioned:

- Ocean Decade, United Nations has 10 Challenges, Challenge 1: Understand and beat marine pollution. A few months ago, 10 White papers were released, and 1 was specific for Pollution.
- <u>Back to Blue</u> includes several initiatives for pollutants.
- <u>World Health Organization (WHO)</u> policy brief.
- UK 5-year action plan for AMR
- EU Marine Strategy Framework Directive (MSFD)
- Water Framework Directive (WFD) England and Wales
- Nutrient Pollution Global Action Network (NP-GAN)
- Harmful Algae Bloom Solutions (HAB-S) Programme
- Intergovernmental Negotiating Committee on Plastic Pollution
- <u>OSPAR</u>
- <u>MERMAN</u> is a national database which holds and provides access to data collected under the Clean Safe Seas Environmental Monitoring Programme (CSEMP) — formerly the National Marine Monitoring Programme (NMMP).
- **QUASIMEME** catalogue covers various programmes of contaminants in seawater, biota and marine sediment.
- Offshore Chemical Notification Scheme (OCNS) applies to chemicals that are intended for use and discharge in the exploration, exploitation and associated offshore processing of petroleum in the UK and Netherlands.
- Marine Natural Capital and Ecosystem Assessment Programme (mNCEA) is Defra's flagship 3-year research and development programme that will provide a robust evidence base, suite of tools and a framework where ecological, societal, and economic information is brought together in a holistic way.

7A.2. List of Pollutants identified

The list of pollutants suggested in the B2B Roadmap was used as a starting point. Experts agreed on the list, but some new groups were also recommended (see Table below).

Group of Pollutants	Comments	Phenomena to Capture,	Current Observing	Future Observing Capacity
		Temporal and Spatial	Networks, Maturity,	
		Scales of the Phenomena	Spatial and Temporal	
			Scale Covered	
		BACK TO BLUE ROA	DMAP	
Persistent bio-	Those that accumulate	Main processes:	-Discrete samples: water, air,	-Autonomous platforms equipped with
accumulating and toxic	in the environment over	bioavailability,	biota, sediments. From local	in-situ sensors/samplers.
compounds (PBTs)	long periods. This	bioaccumulation	(monitoring programmes) to	-Ecotoxicology infrastructures
	includes persistent	(biomagnification), biological	global coverage (e.g.	-In-situ incubators for sediment-water
	organic pollutants	role and toxicity of PBTs:	Caribbean Coastal Pollution	interactions.
	(POPs), per- and	-Effect of route of transport on	Project (CCPP) to study POPs	-In-situ samplers/sensors for
	polyfluoroalkyl	PBT bioavailability	in mammals and ecological	sediment samples.
	substances (PFAS,	-Factors affecting the	and human influence)	
	sometimes called	bioaccumulation of PBTs	-UK Marine Strategy for	
	"forever chemicals"),	-Toxicity of PBTs	sediments ¹ , water and biota:	
	and some pesticides.	-Assessment of PBTs toxicity	following OSPAR Convention	
		and bioavailability from	and Water Framework	
		polluted marine sediments	Directive (WFD).	
		-Biological role of PBTs and		
		human health hazards.		
		-Cumulative impact with other		
		pollutants		
Heavy metals	Including mercury, lead,	Enter the marine environment	-Discrete samples: water, air,	-Autonomous platforms equipped with
-	copper and cadmium.	from a number of natural,	biota, sediments. From local	in-situ sensors/samplers.
		agricultural, and industrial	(monitoring programmes) to	-Ecotoxicology infrastructures
		processes, via long-range	global coverage (e.g.	-In-situ incubators for sediment-sea
			GEOTRACES)	interactions.

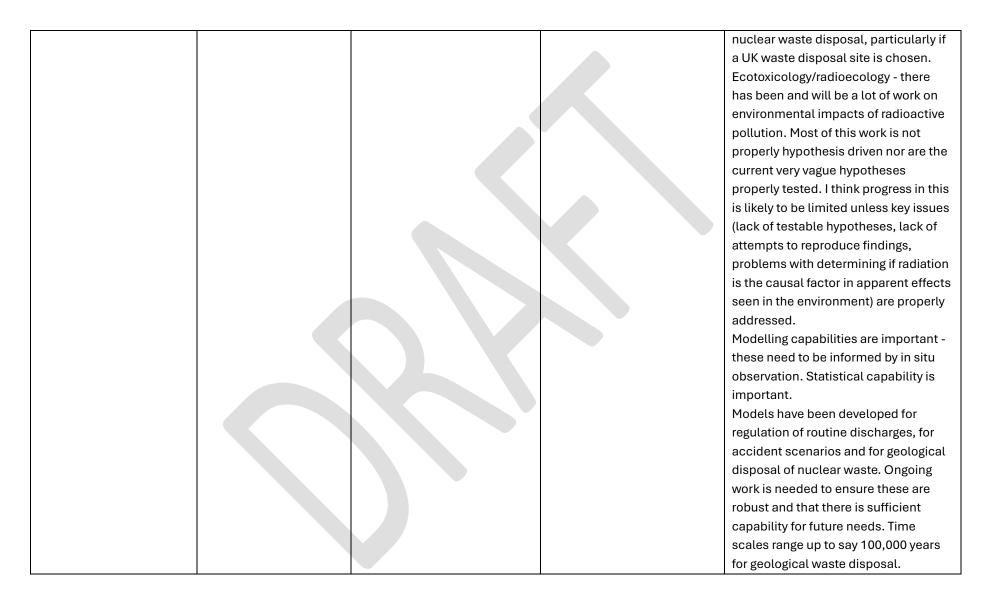
¹ <u>https://moat.cefas.co.uk/pressures-from-human-activities/contaminants/</u>

		transport by air, riverine input,	-UK Marine Strategy for	-In-situ samplers/sensors for
		or run-off from land.	sediments, water and biota:	sediment samples.
		Main processes:	following OSPAR Convention	
		bioavailability,	and Water Framework	
		bioaccumulation, biological	Directive (WFD).	
		role and toxicity of heavy	-Multidisciplinary research	
		metals:	projects air-sea interactions	
		-Effect of route of transport on	(SOLAS)	
		metal bioavailability		
		-Factors affecting the		
		bioaccumulation of heavy		
		metals		
		-Toxicity of heavy metals		
		-Assessment of heavy metal		
		toxicity and bioavailability		
		from polluted marine		
		sediments		
		-Biological role of heavy		
		metals and human health		
		hazards		
		-Cumulative impact with other		
		pollutants		
Nutrients	Fertilisers and organic	GOOS EOV:	GOOS EOV:	GOOS EOV:
	matter, including	-Ventilation; annual to	-Ship-based underway	-Underwater and surface vehicles
	human and animal	decadal; 1000-3000 km.	observations; Pilot;	-Moored fixed-points observations
	waste, that lead to	-Primary production; seasonal	Horizontal coverage	
	eutrophication, where	to decadal; Coastal (0.1-100	(surface); weekly to decadal	
	algal blooms consume	km), Open-ocean (100-1000	-Ship-based repeat	
	so much oxygen from	km).	hydrography; mature;	

	the water that other sea	-Eutrophication; sub-weekly	Horizontal and vertical cover;	
	life dies.	to decadal; Coastal (0.1-100	decadal	
		km).	-Ship-based Fixed-point	
			observatories; Mature;	
			Horizontal cover (local);	
			weekly to decadal	
			-Profiling floats; pilot;	
			Horizontal cover (Global)	
			-Profiling floats; Pilot;	
			Horizontal cover (global)	
Plastics	Including solid plastic	-Ecotoxicity impact of plastic	At global scale GOOS, under	-Controlled multi-stress mesocosms
	waste as well as micro-	in future multi-stress marine	the Intergovernmental	platform
	and nanoplastics.	environment (including other	Oceanographic Commission	-In situ oceanic plastic
	Plastics are a chemical	pollutants) under short- and	(IOC) of UNESCO, is working	degradation/behaviour platform
	pollutant in their own	long-term exposure	to include marine plastic	(Moored and drifting float)
	right and can pick up	-Cumulative impact with other	pollution as an Essential	-Globally accessible plastic polymer
	and transport other	pollutants	Ocean Variable (EOV). Still	spectral library with
	chemicals long	-Identify behaviours and fate	developing, but it aims to	-Enhance the use of AI and machine
	distances.	of plastics exposed to	standardize methods for data	learning algorithms for the automated
		environmental	collection and provide a	detection, classification, and
		change/weathering	coordinated approach to	quantification of plastic pollution from
		-Vertical residence time of	global plastic monitoring,	imagery and sensor data
		plastics and from sea-surface	GPML, led by the United	-Underwater vehicles (AUVs), drones,
		to seabed	Nations Environment	and gliders equipped with sensors and
		-Increase the number of	Programme (UNEP), is a	cameras to conduct large-scale and
		monitoring sites globally,	voluntary partnership and	fine-scale surveys of marine plastic
		- Monitor the transfer of	Ocean Conservancy, the ICC	-In situ sensors and smart buoy to
		plastics through the marine	is the largest volunteer efforts	monitoring in continuous micro and
			to collect and document	nano plastic presence

		food web and assess potential	marine litter, including	-Establish global standards and
		impacts on human health	plastics, from coastlines.	protocols for marine plastic
			Regional scale such as NOAA	monitoring, including sampling
			and OSPAR provide	methods, data processing, and
			continuous monitoring	reporting
Pharmaceuticals	Including medications	-Sources: Sewage effluent,	-Discrete samples: water,	- Improve monitoring of dissolved and
	for humans and	aquaculture, Animal	biota, sediments.	particulate fraction of relevant
	animals, with	husbandry and horticulture,	-Sewage discharge	pharmaceuticals and degradation
	antibiotics a central	Waste disposal.	legislation: Annex IV of	products.
	concern given their	-Processes ² : pharmaceuticals	MARPOL 73/78 ships	- Improve data for the accumulation of
	overuse or misuse.	and their metabolites can	-Water Framework Directive ³	other classes of pharmaceuticals,
		undergo biotic and abiotic	(WFD; Directive 2000/60/EC)	their metabolites and transformation
		transformation (degradation)	covers both freshwaters and	products in marine organisms
		and sorb to suspended	transitional waters (the	-Improve coverage data
		particulate matter (SPM) and	estuarine and coastal area up	
		sediments, and in some cases	to one nautical mile, or 1.85	
		accumulate in the tissues of	km, from the shore). Two	
		aquatic organisms. This will	hormones (17α-	
		be affected by	ethinyloestradiol and 17β -	
		physicochemical conditions	oestradiol) and diclofenac	
		of the environment.	have been placed on a watch	
		-Antimicrobial resistance	list for emerging pollutants	
		-Seasonal trends, sediment	under the WFD.	
		concentration, marine		
		ecotoxicology, factors		
		influencing concentration.		

² https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4213585/ ³ https://www.legislation.gov.uk/uksi/2017/407/contents



Radioactivity	Including recent	Nuclear waste comes from a	Discrete samples of biota,	Measurement of radioactivity in the
	contamination, the	variety of sources, such as	water and sediments: C-137	environment - more accurate and
	historical dumping of	nuclear power plants, nuclear	UK organisations carry out	rapid radiometric methods.
	radioactive waste, and	waste recycling plants,	monitoring programmes to	Potentially nuclear fusion could place
	radiation from natural	nuclear-powered vessels and	provide an independent	a renewed emphasis on tritium. Given
	sources.	weapons testing, hospitals,	assessment of radiation	concerns about tritium releases from
		scientific research centres,	levels in the environment.	Fukushima and a new focus on tritium
		and nuclear weapons	(UK strategy for radioactive	releases from nuclear sites worldwide,
		facilities, as well as from	discharges: 2018 review of	tritium may become of more interest,
		events such as nuclear spills,	the 2009 strategy)	though of course it is currently
		the sinking of a nuclear-	OSPAR Recommendation	routinely measured as part of site
		powered submarine, or	2018/01 on Radioactive	environmental programmes.
		leakage from sealed waste.	Discharges ⁴ and North-East	More emphasis on elements or
		But there is also natural	Atlantic Environment Strategy	analogues for environmental mobility
		radiation.	(NEAES) 2030⁵.	of very long-lived elements in nuclear
		Processes:		waste. More emphasis on naturally
		-Effects of nuclear waste:		occurring radioactive materials
		genetic mutations,		(NORM) waste. There is significant
		development or reproductive		historical and ongoing NORM waste
		changes, cancer, decreased		from e.g. oil and gas extraction.
		lifespan, and death.		Model developments - this is a mature
		-Transport, fate and impact		field and there has already been a lot
				of model development and process
				understanding. I see more importance
				in application and testing of models.
				Continuing work on models for

⁴ https://www.ospar.org/documents?d=38954 ⁵ https://www.ospar.org/documents?v=46337

Oil	Including the toxic C	Dil spills. Main sources are	-Discrete samples: water, air,	-For satellite: Need for a valid
	chemicals used to s	shipping, port and harbours,	biota, sediments. From local	database with spills and lookalikes for
	clean up spills. a	and offshore oil and gas	(monitoring programmes) to	algorithms improvement; new "multi
	ir	ndustries	global coverage (e.g.	or hyper" band radar sensors to
			Caribbean Coastal Pollution	eliminate the detection errors; AI to
			Project (CCPP) to study POPs	process large amount of data
			in mammals and it's	(Topouzelis, and Singha, 2016).
			ecological and human's	-New type of in situ measurements:
			influence)	low-cost buoys with sensors
			-UK Marine strategy for	measuring the type of oil and its
			sediments, water and biota:	chemical composition; small
			following OSPAR Convention	AUV/UAVs for large area monitoring in
			and Water Framework	high resolution.
			directive (WFD).	
			-Sensors installed in	
			moorings, mobile platforms	
			and satellites.	
			-UK has a well-developed	
			and exercised process of	
			response, including	
			measures set out in the UK	
			National Contingency Plan.	
			UK Government is fully	
		-	engaged with European and	
			international partners across	
			a range of groups and	
			initiatives relating to the	
			prevention of spills including	

Household and consumer chemicals The list of chemicals in the average home is long, featuring items like solvents and household cleaners, mould removers, laundry products, detergents, bleach, furniture polish, air fresheners, paints and varnishes, poisons (insecticides, for example) and batteries.	Many cleaning products contain toxic chemicals, as do numerous cosmetics (Benzophenone ⁸), shower gels and sunscreens.	Many cosmetics, shower gels, deodorants, shampoo and sunscreens, for example, contain benzophenone or its derivatives oxybenzone130 and dioxybenzone,131 which are used for their ability to absorb UV-A and UV-B light. Oxybenzone is toxic to aquatic life and has long-lasting effects,132 as are other substances added to some sunscreens such as octinoxate, 4- methylbenzylidene camphor	those presided over by OSPAR, International Maritime Organization ⁶ and European Maritime Safety Agency ⁷ . -Discrete samples for some research studies. -Some components are banned, like Benzophenone is cosmetic products.	We need more studies to understand: -The impact of these products in marine life. -To fill major data gaps regarding the trends of emerging contaminants in freshwater and marine environments as well as their impact on aquatic wildlife in the UK. -Understand the impact when it's combined with many other stressors such as climate change and habitat loss.
		and butylparaben.		
Pseudo-persistent chemicals For UNEP, a half-life longer than 60	These would dissipate relatively quickly in the aquatic environment, except that their	Main processes: bioavailability, bioaccumulation	-Discrete samples: water, air, biota, sediments. From local (monitoring programmes) to global coverage.	More research ⁹ is needed to see how long chemicals persist in the environment versus their supposed

⁶ <u>http://www.imo.org/en/About/Pages/Default.aspx</u>

⁷ http://www.emsa.europa.eu/

⁸ <u>https://www.legislation.gov.uk/eur/2009/1223/annex/ll</u>

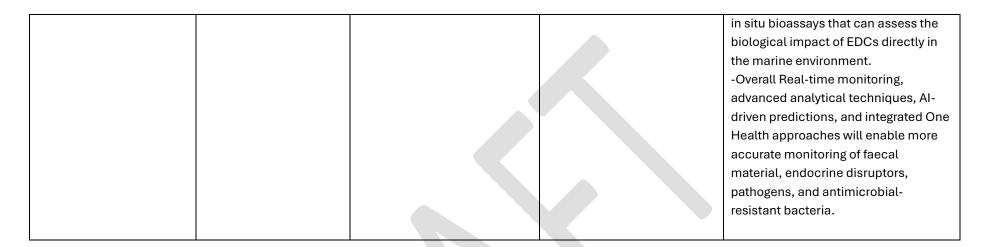
⁹ https://backtoblueinitiative.com/wp-content/uploads/2022/11/Chemical-pollutants-of-major-concern.pdf

days in water falls into the	concentrations keep	(biomagnification), biological		persistence in a laboratory setting, not
persistent category.	rising because they are	role and toxicity:		least as persistence is one of the key
Stockholm Convention	so prevalent in	-Effect of route of transport on		criteria for inclusion in the Stockholm
and other	products.	chemicals bioavailability		Convention and other
regulatory lists of		-Factors affecting the		regulatory lists of hazardous
hazardous chemicals.		bioaccumulation of chemicals		chemicals.
		-Toxicity		
		-Assessment of chemicals		
		toxicity and bioavailability		
		from polluted marine		
		sediments		
		-Biological role of chemicals		
		and human health hazards.		
		-Cumulative impact with other		
		pollutants		
Other chemicals	Including a wide variety	Main processes:	-Discrete samples: water, air,	-Autonomous platforms equipped
	of the approximately	bioavailability,	biota, sediments. From local	within situ sensors/samplers.
	300,000 chemicals in	bioaccumulation	(monitoring programmes) to	-Ecotoxicology infrastructures
	use, most of whose	(biomagnification), biological	global coverage.	-In situ incubators for sediment-sea
	effects on the	role and toxicity:		interactions.
	environment and	-Effect of route of transport on		-In situ samplers/sensors for sediment
	human health are	chemicals bioavailability		samples.
	unknown.	-Factors affecting the		-Needs more sample screening to
		bioaccumulation of chemicals		detect new components.
		-Toxicity		-Store samples for future experiments
		-Assessment of chemicals		
		toxicity and bioavailability		
		from polluted marine		
		sediments		

		-Biological role of chemicals		
		and human health hazards.		
		-Cumulative impact with other		
		pollutants		
		INPUT FROM MEET	INGS	
Invasive non-native	Including species that	-Identify source, Population	-Global Ballast Water	-Remote Sensing and Satellite
species (INNS)	can alter marine	Growth and Spread	Information Clearinghouse	Technology with High-Resolution
	ecosystems.	-Ecological Impact (short term	(GBWIC) is an established	Imagery and Spectral Sensing
		versus long term) which	network within the	Monitoring large-scale marine habitats
		includes Displacement of	International Maritime	and coastal zones for signs of invasive
		Native, Species, Genetic	Organization (IMO) and the	species and tracking the movement
		Pollution and Habitat	Global Invasive Species	and spread of invasive species in real
		Modification	Programme (GISP). It was	time
			developed to monitor and	-Environmental DNA (eDNA)
			manage the spread of	Technology including High-Sensitivity
			invasive species through	Detection: of low concentrations and
			ballast water.	use of Portable Devices for field-based
			-Global Invasive Species	testing and faster results.
			Database (GISD) has a	-Artificial Intelligence (AI) and Machine
			Section managed by the	Learning for the prediction of invasive
			IUCN's Invasive Species	species spread and Automated Image
			Specialist Group (ISSG)	Analysis of remote sensing imagery
			-Alien Species Information	and underwater videos/photos.
			Network (EASIN) is an	-Real-Time-Rapid Response Systems-
			integrated system within	sensors
			Europe, created by the	
			European Commission. This	
			network has a marine	

			component that focus on	
			•	
			monitoring invasive species	
			in European marine	
			environments.	
			-The Marine Aliens Project,	
			supported by the UK	
			government and various	
			academic institutions, is a	
			mature network focused on	
			monitoring marine invasive	
			species in the United	
			Kingdom. Covers UK coastal	
			and marine environments.	
			Involves both historical	
			analysis and continuous	
			monitoring.	
Noise	Ocean sound, including	-Enhancing ability to track and	-Noise impacts on specific	-Real-time data collection and AI-
	underwater noise	manage marine noise	species, such as whales	driven analysis Implement satellite-
	pollution.	pollution on various scales	using arrays of hydrophones	linked buoys equipped with
		-Continuous Underwater	and classification of sound	hydrophones
		Noise generate in the ocean	sources, including both	-Utilize IoT technology to create a
		from shipping traffic or other	natural and anthropogenic	network of interconnected
		offshore activity and Short,	noise.	hydrophones
		high-intensity noise events	-Standardized methods and	-Invest in the development of low-
		that occur sporadically such	protocols for global data	cost, high-resolution hydrophones
		as underwater explosions, pile	collection	that can be widely deployed, including
		driving,	-Global Networks include	in citizen science projects
		-Impact on marine life and	International Quiet Ocean	
		behaviour of different type of	-	
		behaviour of different type of	Experiment and Ocean	

		Noice i.e. vibratory versus	Sound EOV. Same Regional	
		tonal noise and/or any Noise	networks operate	
		that directly interferes with the	continuously, with fixed	
		sounds produced by marine	hydrophone arrays (IOOS	
		organisms.	[US], ONC [Canada]).	
Light level	Including coastal	-Quantify the intensity and	-Global network such as	-Existing marine observing networks
	darkening, CDOM,	distribution and trend of ALAN	GOOS and MBON are well-	need better integration of light
	artificial light at night	in marine environments	established for broader	pollution metric and define standard
	(ALAN).	-Highlighting hotspots of light	ocean monitoring but are	methods. For example, Satellite
		pollution and identifying areas	only beginning to consider	observations, such as NOOA Visible
		most at risk of ecological	light pollution as a factor.	Infrared Imaging Radiometer Suite
		disruption	-The International Dark-Sky	(VIIRS) Day/Night Band, provide global
			Association plays a key role	coverage of light pollution, including in
		Quantify the effect of Impact	in the awareness and	marine areas. VIIRS is particularly
		on Direct glare, light trespass	monitoring of light pollution,	useful in monitoring light pollution in
		i.e. passing ship's; Skyglow	which indirectly affects	coastal regions, where human
		leading temporal disruption	coastal marine	settlements, industrial activities, and
		i.e. Nightly increase in sky	environments.	tourism contribute to ALAN. VIIRS can
		brightness over coastal cities,		be also used to track light pollution
		disruption of daily life cycle in		from ships, which can be a significant
		marine ecosystem; Seasonal		source of ALAN,
		variations in skyglow		-Drones equipped with cameras or
		(especially during the winter		sensors to monitor light pollution to
		month) during winter months,		provide fine spatial data.
		bioluminescence		-All-Sky Cameras (equipped with
		suppression.		fisheye lenses) to provide continuous
				and quantitative data



Biological	Includes faecal	-Presence and Concentration;	There is ongoing need for	The future observing capacity for
	bacteria, pathogens,	Spread and Transmission; Co-	integration and expansion,	marine biological pollution, including
	endocrine disrupters	Occurrence with Antibiotics	particularly in the context of	faecal material, endocrine disruptors,
	and antimicrobial	(in the case of AMRs),	environmental AMR	pathogens, and antimicrobial-
	resistant bacteria.	Bioaccumulation (for EDCs), 🧹	monitoring and emerging	resistant bacteria, is expected to
		Faecal Indicator Bacteria (FIB)	contaminants like endocrine	advance significantly due to
		Concentration (in the case of	disruptors. Faecal materials	innovations in technology, data
		Faecal contamination)	are better developed at local	integration, and global collaboration.
		-Event base (i.e. suddenly	and regional scale. Overall	Here's what the future might hold in
		spills or discharge Short-Term	monitoring endocrine	these areas:
		(Daily to Weekly) for	disruptors is less mature	-Faecal material real-time monitoring
		phenomena that fluctuate	compared to traditional	with advanced sensors stationed at
		rapidly, like faecal	pollutants. Environmental	key locations such as coastal outflows
		contamination after rainfall,	Monitoring and Assessment	and river mouths, and marine
		pathogen outbreaks, plus	Programs: Agencies like the	recreational spot; -Satellite-based
		Long-Term (Monthly to Yearly)	EPA, EEA, has a specific	remote sensing combined to enhance
		for understanding i.e. trends	monitoring programs to track	the detection and mapping of faecal
		and bioaccumulation.	endocrine disruptors like	contamination over larger areas,
		-Local (Near sources of	bisphenol phthalates, and	where combination with AI algorithm
		pollution) versus global	pesticides while international	could predict contamination events.
		spatial scale where pollutants	research consortia (such as	Development of portable, user-friendly
		can be transported across	EU's NORMAN Network) are	monitoring kits could empower
		large distances	assessing the presence of	communities improving spatial
			emerging contaminants,	coverage.
			including endocrine	-Endocrine Disruptors-Advanced in
			disruptors	analytical technique such as mass
				spectrometry, to screen for a broad
				spectrum of endocrine disruptors in
				marine environments. Development of

REFERENCES

Topouzelis, K. and Singha, S., 2016, August. Oil spill detection: past and future trends. In *Proceedings of the ESA Living Planet Symposium* (Vol. 1, pp. 387-402). Paris, Frence: European Space Agency (Special Publication).

7A.3. Contributors

The list includes all experts that have contributed to this report by either answering the questionnaire, sending their inputs by email or joining the roadshows organised (names are listed by alphabetical order):

Name	Institution
Alex Ford	University of Portsmouth
Alves Tiago	Cardiff University
Andrew Sweetman	Lancaster University
Arlie McCarthy	Helmholtz Institute for Functional Marine Biodiversity
	(HIFMB) at the University of Oldenburg
Bhavani Narayanaswamy	Scottish Association for Marine Science (SAMS)
Charles Goddard	The Economist Group
Charlotte Lloyd	University of Bristol
Christopher Vane	British Geological Survey
Denise Risch	Scottish Association for Marine Science (SAMS)
Emily Govan	Imperial College London
Emily Rowlands	British Antarctic Survey (BAS)
Emma Ransome	Imperial College London
Gareth Roberts	Imperial College London
Geslaine Rafaela Lemos	Scottish Association for Marine Science (SAMS)
Goncalves	
Guy Woodward	Imperial College London
Hannah Whitby	University of Liverpool
Helena Reinardy	Scottish Association for Marine Science (SAMS)
Jason Weeks	Joint Nature Conservation Committee (JNCC)
Jim Smith	University of Portsmouth
Joe Penhaul Smith	Sustainable Sailing Ltd
Josie Russell	Centre for Environment, Fisheries and Aquaculture
	Science (CEFAS)
Justin Dunning	Chelsea Technologies
Leon Barron	Imperial College London
Lonneke Goddijn-Murphy	ERI, University of the Highlands and Islands
Lucy Woodall	University of Exeter
Mark Fitzsimons	University of Plymouth
Matt Cole	Plymouth Marine Laboratory (PML)

Michelle Devlin	Centre for Environment, Fisheries and Aquaculture
	Science (CEFAS)
Neil James	Environmental Research Institute, University of the
	Highlands and Islands
Nienke Van Geel	Scottish Association for Marine Science (SAMS)
Nikolet Kostur	King's College London
Rachel Jones	Zoological Society of London
Richard Lampitt	National Oceanography Centre (NOC)
Yevgeny Aksenov	National Oceanography Centre (NOC)

7A.4. Cross-cutting ideas

There are some cross-cutting areas or activities we have identified that this challenge will benefit from working together with others. Some examples:

- Having a sampling strategy where we combined efforts to reduce labour time, ship time and cost.
- Holistic approach when organising field camping and studies. Pollutants is not an isolated problem; it requires other variables to really understand how other environmental and societal variables are connected and how each variable affect the other.
- Combined efforts when engaging with industry, society and government to reduce stakeholders' fatigue and avoid duplication of efforts.

https://fr.linkedin.com/company/ioc-unesco?trk=public_post-texthttps://fr.linkedin.com/company/iocunesco?trk=public_post-text

ⁱ <u>https://uk.linkedin.com/company/economist-impact?trk=public_post-text</u>

https://jp.linkedin.com/company/the-nippon-foundation?trk=public_post-text

https://backtoblueinitiative.com/wp-content/uploads/2024/03/Back-to-Blue-Roadmap-for-Action-on-Ocean-Pollution.pdf

^{*} https://ke.linkedin.com/company/unep?trk=public_post-text

vi <u>https://oceandecade.org/vision-2030/</u>

vii <u>https://oceandecade.org/challenges/</u>